If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42w^2+19w=0
a = 42; b = 19; c = 0;
Δ = b2-4ac
Δ = 192-4·42·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-19}{2*42}=\frac{-38}{84} =-19/42 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+19}{2*42}=\frac{0}{84} =0 $
| 6x+7-83+15x=180 | | 4(4-7x)+4x=112 | | 6y+1=y+7 | | 2x-5=-1+12 | | 24=-2(3+5x) | | 3x*5=23 | | 3(4d-11)=111 | | -3h+5=-4h | | 29=-14x+1 | | 10x-10=8x-6 | | 2(5c+8)=146 | | 6z+20=7z+12 | | 4x²-8x-634=0 | | 2x-5=6× | | (7x)4x+4=4(30x-6) | | 8+(x/7)=4 | | 90+m2+46=180 | | -9x-4x=13x | | 3.9=1.8b+(-6) | | 1/3g-12=5/6 | | 3n=19+2n+1 | | z=642 | | 5x+10=310-10x | | /k^2-4=29 | | 9b−9=6b | | x-2÷3=8 | | 9-4x+3=8-3x | | 12+x=−3(4−x) | | 1950-3x=405 | | 4w-17-3w=11 | | -3m+39=6(3m+3) | | 7x-6+8x=9 |